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Problem Set 7

This problem explores Turing machines, nondeterministic computation, properties of the  R and 
RE languages, and the limits of R and RE languages.  This will be your first experience exploring 
the limits of computation, and I hope that you find it exciting!

Start this problem set early.  It contains six problems (plus one survey question and one extra 
credit  problems),  some of  which require  a  fair  amount  of  thought.   I  would suggest  reading 
through this problem set at least once as soon as you get it to get a sense of what it covers.

As much as you possibly can, please try to work on this problem set individually.  That said, if 
you do work with others, please be sure to cite who you are working with and on what problems. 
For more details, see the section on the honor code in the course information handout.

In any question that asks for a proof, you  must provide a rigorous mathematical proof.  You 
cannot draw a picture or argue by intuition.  You should, at the very least, state what type of proof 
you are using, and (if proceeding by contradiction, contrapositive, or induction) state exactly what 
it is that you are trying to show.  If we specify that a proof must be done a certain way, you must 
use that particular proof technique; otherwise you may prove the result however you wish.

If you are asked to prove something by induction, you may use weak induction, strong induction, 
the well-ordering principle,  structural induction,  or well-founded induction.   In any case,  you 
should state your base case before you prove it, and should state what the inductive hypothesis is 
before you prove the inductive step.

As always, please feel free to drop by office hours or send us emails if you have any questions.  
We'd be happy to help out.

This problem set has 125 possible points.  It is weighted at 6% of your total grade.  The earlier 
questions serve as a warm-up for the later problems, so do be aware that the difficulty of the 
problems does increase over the course of this problem set.

Good luck, and have fun!

Due Friday, May 25th at 2:15 PM



Problem One: Programming Turing Machines (20 Points)

Consider the alphabet Σ = {0, 1, ≠} and the language 

NE = { w≠x | w, x  {∈ 0, 1}* and w ≠ x }.

For example, 0110≠011  ∈ NE, ≠01  ∈ NE, but 01≠01  ∉ NE, ≠  ∉ NE, and 0≠1≠  ∉ NE.

Write a program in WB3 for this language.  Recall that WB3 supports the following commands:

• Move left;

• Move right;

• Move left until { s1, …, sn }, where s1, …, sn are tape symbols or variables;

• Move right until { s1, …, sn }, where s1, …, sn are tape symbols or variables;

• Write s, for any tape symbol or variable s;

• Go to L, where L is a line number or a label;

• If reading s, go to L, where s is a symbol or variable and L is a line number or label;

• Load current into X, where X is a variable;

• Load s into X, where s is a tape symbol or variable and X is a variable;

• If X = Y, go to L, where X and Y are variables/constants and L is a line number/label;

• Accept; and

• Reject.

As a courtesy to your TAs, please comment your code and include a one- or two-paragraph summary of 
how the program works.

Problem Two: Nondeterministic Algorithms (24 points)

Nondeterministic Turing machines make it possible to solve many problems that might otherwise seem 
unrecognizably or undecidably hard.

i. Prove that RE is closed under union.  That is, if L1  ∈ RE and L2  ∈ RE, then L1 ∪ L2  ∈ RE as 
well.  Your proof can proceed along the lines of the ones we covered in lecture, so feel free to  
use high-level descriptions of Turing machines rather than formally writing out transition tables.

ii. Prove that the RE languages are closed under concatenation.  That is, if L1  ∈ RE and L2  ∈ RE, 
then L1L2  ∈ RE as well.  (Hint: If you are given a string w in L1L2 and knew how to cut it into  
strings x and y such that x  L∈ 1 and y  L∈ 2, could you check that you had guessed correctly?)

iii. Consider the language

Lne = { ⟨M  | ⟩ M is a TM and (ℒ M) ≠ Ø }

It is possible to show that this language is undecidable, but you don't need to prove this. Instead, 
show that  Lne  ∈ RE by giving a high-level description of an NTM that recognizes  Lne, then 
proving that your NTM is correct.



Problem Three: This Program is Not Responding (12 Points)

Most  operating  systems  provide  some functionality  to  detect  programs  that  are  looping  infinitely. 
Typically, they display a dialog box containing a message like these shown below:

     

These messages give the user the option to terminate the program or to let the program keep running.

An ideal OS would shut down any program that had gone into an infinite loop, since these programs 
just waste system resources (processor time, battery power, etc.) that could be better spent by other 
programs.  Since it makes more sense for the OS to automatically detect programs that have gone into 
an infinite loop, why does the OS have to ask the user whether to terminate the program or let it keep 
running?  

Problem Four: Unrecognizable and Undecidable Languages (20 Points)

i. Prove or disprove: If L1 is unrecognizable and L1  ⊆ L2, then L2 is unrecognizable.

ii. Prove or disprove: If L2 is unrecognizable and L1  ⊆ L2, then L1 is unrecognizable.

iii. Do your answers still hold when “unrecognizable” is replaced with “undecidable?”  What about 
“not context-free?”  What about “not regular?”



Problem Five: ATM is Unrecognizable? (16 Points)

In Friday's lecture, we proved that ATM  ∈RE but that ATM  ∉R.  Our proof worked as follows:

• Assume, for the sake of contradiction, that ATM is decidable.

• Using a decider for ATM as a subroutine, construct a recognizer for LD.

• Arrive at a contradiction, since we know that LD is unrecognizable.

• Conclude, therefore, that ATM is undecidable.

Initially,  it  might  seem like we could easily modify this  proof to  show that  ATM  ∉ RE by simply 
changing our assumptions as follows:

• Assume, for the sake of contradiction, that ATM is recognizable.

• Using a recognizer for ATM as a subroutine, construct a recognizer for LD.

• Arrive at a contradiction, since we know that LD is unrecognizable.

• Conclude, therefore, that ATM is unrecognizable.

Below is an incorrect proof along these lines.  This proof contains an error that renders the proof  
invalid.  Give the exact line of the proof that contains the error and explain why it is incorrect.

Theorem: ATM is unrecognizable.

Proof: By contradiction; assume that ATM is recognizable and let H be a recognizer for it. 
Then consider this machine D:

D = “On input ⟨M :⟩
Construct ⟨M, ⟨M .⟩⟩
Run H on ⟨M, ⟨M .⟩⟩
If H accepts ⟨M, ⟨M , reject.⟩⟩
If H rejects ⟨M, ⟨M , accept.”⟩⟩

We claim that (ℒ D) = LD.  To see this, note that D accepts ⟨M  iff ⟩ H rejects ⟨M, ⟨M .⟩⟩  
Since  H is  a  recognizer for ATM,  H rejects  ⟨M,  ⟨M  iff  ⟩⟩ ⟨M,  ⟨M   A⟩⟩ ∉ TM.   Since
⟨M, ⟨M   A⟩⟩ ∉ TM and ⟨M, ⟨M  is a valid TM/string pair, this means that ⟩⟩ ⟨M   (⟩ ∉ ℒ M). 
Consequently, we have that D accepts ⟨M  iff ⟩ ⟨M   (⟩ ∉ℒ M).  Therefore, (ℒ D) = LD.

Since (ℒ D) = LD, we know that LD  ∈ RE.  But this is impossible, since we know that 
LD  ∉ RE.   We have reached a  contradiction,  so  our  assumption  must  have  been 
wrong.  Thus ATM is unrecognizable. ■



Problem Six: Why Decidability and Recognizability? (28 Points)

There are two classes of languages associated with Turing machines – the RE languages, which can be 
recognized by a Turing machine, and the R languages, which can be decided by a Turing machine.  But 
why are there two different complexity classes?  Why didn't we talk about a model of computation that 
accepted just the R languages and nothing else?  After all, having such a model of computation would 
be useful – if we could reason about automata that just accept recursive languages, it would be much 
easier to see what problems are and are not decidable.

It turns out, interestingly, that there is no class of automata with this property, and in fact the only way 
to build automata that can decide all recursive languages is to also have those automata also accept 
some languages that are RE but not R.  This problem explores why.

Suppose, for the sake of contradiction, that there is an automaton called a deciding machine (or DM 
for short) that has the computational power to decide precisely the  R languages.  That is,  L  ∈ R iff 
there is a DM that decides L.

We will make the following (reasonable) assumptions about deciding machines:

• Any recursive language is accepted by some DM, and each DM accepts a recursive language.  

• Since DMs accept precisely the recursive languages, all DMs halt on all inputs.  That is, all  
DMs are deciders.  

• Since deciding machines are a type of automaton, each DM is finite and can be encoded as a 
string.  For any DM D, we will let the encoding of D be represented by ⟨D .⟩

• Since DMs are an effective model of computation, the Church-Turing thesis says that the Turing 
machine is at least as powerful as a DM.  Thus there is some Turing machine UD that takes as 
input a description of a DM D and some string w, then accepts if D accepts w and rejects if D 
rejects w.  Note that UD can never loop infinitely, because D is a deciding machine and always 
eventually accepts or rejects.  More specifically,  UD is the decider “On input ⟨D,  w , simulate⟩  
the execution of D on w.  If D accepts w, accept.  If D rejects w, reject.”

Unfortunately, these four properties are impossible to satisfy simultaneously.

i. Consider the language REJECTDM = { ⟨D  | ⟩ D is a DM that rejects ⟨D  }.  Prove that ⟩ REJECTDM 

is decidable.

ii. Prove that there is no DM that decides REJECTDM.

Your result from (ii) allows us to prove that there is no class of automaton like the DM that decides 
precisely the R languages.  If one were to exist, then it should be able to decide all of the R languages, 
including REJECTDM.  However, there is no DM that accepts the decidable language REJECTDM.  This 
means that one of our assumptions must have been violated, so at least one of the following must be 
true:

• DMs do not accept precisely the R languages, or

• DMs are not deciders, or

• DMs cannot be encoded as strings (meaning they lack finite descriptions), or

• DMs cannot be simulated by a TM (they are not effective models of computation)

Thus there is no effective model of computation that decides just the recursive languages.



Problem Seven: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're 
doing.  For a free five points, please answer the following questions.  We'll give you full credit no 
matter what you write (as long as you write something!), but we'd appreciate it if you're honest about 
how we're doing.

i. How hard did you find this problem set?  How long did it take you to finish?

ii. Does that seem unreasonably difficult or time-consuming for a five-unit class?

iii. Did you attend Monday's problem session?  If so, did you find it useful?

iv. How is the pace of this course so far?  Too slow?  Too fast?  Just right?

v. Is there anything in particular we could do better?  Is there anything in particular that you think 
we're doing well?

Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class.  This is probably the easiest way 
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout 
hangout in the Gates building.  If you haven't been there before, it's right inside the entrance 
labeled “Stanford Engineering Venture Fund Laboratories.”   There will  be a  clearly-labeled 
filing cabinet where you can submit your solutions.

3. Send  an  email  with  an  electronic  copy  of  your  answers  to  the  submission  mailing  list
(cs103-spr1112-submissions@lists.stanford.edu)  with  the  string  “[PS7]”  somewhere  in  the 
subject line.  If you do submit electronically, please submit your assignment as a single PDF if  
at all possible.  Sending multiple image files makes it much harder to print out and grade your 
submission.

If you are an SCPD student, we would strongly prefer that you submit solutions via email.  Please 
contact us if this will be a problem.

Extra Credit Problem: Non-Closure under Homomorphism (5 Points Extra Credit)

Unlike the regular  languages and context-free languages,  recursive languages are  not closed under 
homomorphism.   In  particular,  there  exists  a  recursive  language  L over  some  alphabet  Σ1 and  a 
homomorphism h* : Σ1* → Σ2* such that h*(L) is undecidable.  Find a language L and homomorphism 
h* such that that L is recursive, h* is a homomorphism, and h*(L) is undecidable.  Then prove that each 
of these properties holds for your choice of L and h*.
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